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To address low accuracy and poor robustness in tomato maturity detection under
complex agricultural environments (light variations, occlusion, multi-scale targets), this
study proposes a lightweight multi-scale differential fusion network Tomato Net-MSF. Its
core innovation is scale-customized feature enhancement modules: (1) Small-scale KSFA
module (multi-core selection + spatial-spectral attention) suppresses background and
improves small-target recognition; (2) Medium-scale C3k2I module (2*2 simplified
convolution + dual-bottleneck stacking) enhances fusion stability; (3) Large-scale LSConv
module (global perception + dynamic aggregation) refines target contours. Experiments on
Laboro Tomato dataset show: mAP50 0.75 (8% higher than baseline YOLOv11), F1 0.72
(6% higher), and S50FPS inference speed (20ms/frame) on RK3588NPU (5-fold
acceleration). The model optimizes multi-scale detection balance, integrating high precision,
robustness and edge deployment capability, providing an efficient solution for real-time
tomato maturity detection in complex scenarios.

Computer vision, Edge computing, Tomato maturity detection, Agricultural
robots

Accurate tomato ripeness recognition is a core bottleneck for smart agricultural harvesters [1]. Field
deployment faces key challenges: 28% small-target miss rate in multi-scale detection; <65%
accuracy of HSV model for half-ripe fruits (hue 110-140°) under severe illumination; 17.2% false
detection rate when branch/leaf occlusion >30%; and <0.68 Fl-score for transitional ripeness,
failing refined harvesting needs.Existing color-texture fusion methods lack generalization. YOLO
series dominates agricultural detection for real-time performance (latency <22ms, speed >45 FPS)
[2]. YOLOv4 (CSPDarknet, -20% computation), YOLOvS8 (anchor-free, +3.8% accuracy),
YOLOvV11 (-35% parameters) evolve lightweight, but 72% small-target recall still mismatches
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agricultural scenarios.Target detection optimization focuses on feature fusion, dynamic selection and
large-kernel convolution (e.g., FPN/PAN, CSPNet). However, RGB-D fusion and knowledge
distillation face cost/accuracy issues; existing grading systems confuse transitional ripeness [3].

2. Research methods
2.1. Overview of the overall architecture

Building upon the YOLOv11 detector framework, we modularized its backbone network to enhance
tomato ripeness detection performance [4]. Tomato images extract features via improved CSP
backbone, retain YOLOv11's main structure, replace some C3k21 with new modules (KSFA, C3k2I,
LSConv) to adapt different scale processing. Multi-scale features fuse through FPN+PAN neck, new
modules implanted by scale—shallow KSFA enhance small targets, mid-layer C3k2l stabilize
fusion, high-layer LSConv refine representation [5]. Fused features feed into YOLOvI11 detection
head to complete ripeness classification and localization. The architecture follow the principles of
reusing optimized structure, enhancing capabilities at key layers, and controlling overhead, new
modules' details will be elaborated in next section.

2.2. KSFA module (small-scale branch)

Small-scale feature maps are mainly used to detect very small tomato targets in images, but they are
also more susceptible to background clutter interference. For this reason, the Kernel-Selective
Feature Attention (KSFA) module is introduced to improve the sensitivity of the small-scale branch
to targets and the suppression of background noise.
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2.3. C3k2]l module (mesoscale branch)

Mid-scale features target medium tomatoes, the network's key link. Derived from YOLO's C3 with
2x2 residual kernels and dual-bottleneck stacking, C3k2l boosts fusion stability. Compared to
original C3's 1x1-3x3-1x1, its 2x2 kernels cut parameters and sharpen edges; dual-bottlenecks
enrich diversity. Retaining CSP basics (split-input concatenation), it splits gradients to reduce
redundancy, captures fine textures, and achieves full feature extraction with minimal parameter
growth.
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2.4. LSConv module (large-scale branch)

Large-scale features target close-up/focused tomatoes, requiring attention to shape and edge details.
The introduced LSConv aim to "see the big picture and analyze details", combining large kernels'
global perception and small kernels' local refinement, with two sub-components: LKP and SKA.

Input features first pass LKP, which use large receptive field convolutions (e.g., 7*7 via dilated
convolution/multi-layer stacking) to extract target contour. Large kernels integrate wider context,
aiding global shape grasp, critical for ripe contour identification and avoiding adjacent adhesion.
LKP's output then goes to SKA (drawing on Selective Kernel Attention), a dynamic small
convolution aggregation module with the following formula:
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2.5. Multi-scale module allocation strategy

KSFA, C3k2l and LSConv are assigned to small, medium and large scales respectively, a
differentiated strategy matching tomato features and module capabilities; small-scale KSFA boosts
SNR for tiny targets, large-scale LSConv balances big tomatoes' outline and details, medium-scale
C3k21 stabilizes feature fusion, achieving "targeted solution"; ablation experiments show cross-scale
misuse harm performance, e.g., LSConv on small scales increases cost and loses details, KSFA
replacing C3k2l in medium scales causes insufficient fusion.

3. Experimental design
3.1. Data set sources

This study adopt open-source Laboro Tomato dataset, supporting tomato detection and segmentation
across ripening stages. Collected via two cameras with different parameters under multi-
angle/illumination conditions, it covers diverse growth environments and appearances; each tomato
instance is annotated with bounding box, segmentation mask, ripeness (fully/half/unripe) and size
(normal/cherry) tags. The dataset have diversity in ripeness, size combinations and collection
conditions, with high research and application value in detection, segmentation and ripeness
recognition.

3.2. Evaluation indicators

mAP; = & SN AP; (IoU = 0.5) (10)

MAP;e; = o 208 SN AP, (ToU = t), t ¢ {0.50,0.55, g .,0.95} (1)
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4. Experimental results and analysis
4.1. Overall performance comparison

Table 1. Comparison of detection performance for different stage module combinations on
YOLOv11n (n-scale)

Combination Name/Number (P1/2) (P3) (P4) (P5) (F1 Score) mPA50 mPAS50:95
KSFA-LS | 101 KSFA  LSConv LSConv LSConv 0.68@0.434 0.72 0.54
KSFA-LS | 102 KSFA KSFA  LSConv LSConv 0.68@0.362 0.73 0.54
KSFA-LS | 103 KSFA KSFA KSFA  LSConv  0.69@0.361 0.73 0.56
KSFA-LS | 104 KSFA KSFA KSFA KSFA  0.70@0.387 0.74 0.56

LSConv | 201 LSConv LSConv LSConv LSConv 0.65@0.303 0.68 0.51
LSConv | 202 C3k21  LSConv LSConv LSConv 0.68@0.343 0.70 0.53
LSConv | 203 C3k21 C3k21  LSConv LSConv 0.68@0.361 0.71 0.55
LSConv | 204 C3k21 C3k21 C3k21 LSConv 0.70@0.304 0.70 0.56
KSFA | 301 KSFA C3k21 C3k21 C3k21  0.68@0.364 0.72 0.54
KSFA | 302 KSFA KSFA C3Kk21 C3k21  0.68@0.365 0.72 0.55
KSFA | 303 KSFA KSFA KSFA C3k21  0.68@0.393 0.72 0.54
KSFA | 304 KSFA KSFA KSFA KSFA  0.67@0.358 0.71 0.55
KSFA++LS | 401 KSFA C3k21  LSConv LSConv 0.72@0.424 0.75 0.58
KSFA++LS | 402 KSFA C3k21 C3k21 LSConv  0.68@0.385 0.73 0.56
KSFA++LS | 403 KSFA KSFA C3k21 LSConv 0.69@0.339 0.73 0.55
YOLOv11(BS) C3k21 C3k21 C3k21 C3k21  0.64@0.301 0.67 0.47

Table 2. Comparison of F1(max) and computational cost for different model combinations across
five scales (n/s/m/1/x)

Combination Name/Number n

s m 1 X
LSConv | 204 0.70@6.2 0.73@21.8 0.76@41.8 0.76@85.4 0.79@133.6
KSFA++LS | 401 0.75@5.3 0.76@20.3 0.77@41.3 0.79@87.7 0.80@136.6
KSFA | 304 0.70@5.0 0.73@16.9 0.76@30.6 0.77@60.7  0.78@92.3
YOLOvVII(BS) 0.67@w6.4 0.72@21.6 0.75@62.4 0.74@89.6 -@195.5
average computing power requirement 5.7 21.23 44.025 80.85 139.575
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4.2. Complex scene performance
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Figure 2. Tomato Net-MSF

Figure 2 demonstrates that the Tomato Net-MSF model accurately identifies different tomato
varieties and their corresponding maturity levels.

4.3. Feature visualization
To analyze the impact of each module on feature extraction, researchers visualized feature maps at

different scales using heat maps. The final Tomato Net-MSF model validated the effectiveness of the
multi-scale differentiated module allocation strategy.
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Figure 3. Comparison of response thermograms of different models in the multi-scale feature layer
4.4. Deployment of domestic edge computing platform

To verify the model's deployment performance on domestic SoC platforms, this study convert
trained pt model to rknn via Rockchip's toolchain, develop an optimized multi-thread framework
(supports custom pre/post-processing and visualization) and open-source it; deployment tests show
excellent performance under limited computing power and overlapping fruits. To optimize RK3588
NPU quantization deployment, this study find YOLOvll1n's SiLU has abnormal confidence output
(limited to 0.5) in INT8 quantization due to asymmetry and scale adaptation issues, replacing SiLU
with ReLU solves distortion with <0.8% accuracy loss, expanding confidence range and
accelerating convergence, providing reliable basis for agricultural robots.

Figure 4. Demonstration of real-time edge detection with RK3588

The proposed Tomato Net-MSF (KSFA+C3k2I+LS architecture) in this study achieve the best
full-scale performance, its F1 Score outperform the baseline YOLOvI11n under all model scales
while GFLOPs reduce significantly; for example, under the n model, the F1 Score reach 0.72@5.3,
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which is more than 6% higher than YOLOv11n's 0.68@6.4, and the computational cost decrease by
about 17%, it also show significant scalability advantages at large scales—under the x model, the
baseline YOLOv1ln cannot run in the local environment due to excessive computing power
requirements (195.5 GFLOPs), while Tomato Net-MSF still maintain stable performance of
0.80@136.6; the improvement of a single module is limited, KSFA or LSConv perform close to
Tomato Net-MSF at some scales but lack overall stability and robustness, making it difficult to
balance multi-scale target detection, in addition, Tomato Net-MSF balance lightweight and accuracy,
under small scales (n, s), it not only improve accuracy but also reduce computational cost, proving
its strong application potential in edge computing and resource-constrained scenarios.

5. Conclusion

This study proposes Tomato Net-MSF (improved for tomato ripeness detection), integrate
differentiated multi-scale modules into YOLOv1l. Small-scale KSFA enhance small-target
detection; mid-scale C3k2l stabilize feature fusion, large-scale LSConv balance global perception
and detail. Differentiated allocation optimize accuracy-efficiency balance.Experiments show Tomato
Net-MSF outperform YOLOv11n (baseline) in mAP/F1 on Laboro Tomato dataset, robust to strong
light/occlusion. It achieve 50 FPS (=20 ms/frame) on RK3588 NPU (~5x faster), with high practical
deployment potential.Limitations remain: limited data diversity, poor ultra-low power platform
adaptation, insufficient greenhouse verification. Future research include dataset expansion, model
lightweight, multi-task fusion and cross-modal perception to advance fruit detection in intelligent
harvesting.

Funding information

This work was supported by the Jiangsu Province College Students' Innovation and
Entrepreneurship Training Program under Grant No. 202411276017Z. The corresponding project
title is "Design and Control Method Research of Tomato Picking Robot Based on Machine Vision".
Additionally, we would like to thank Professor Chen Wei for his careful guidance during the
research and Chen Wei Laboratory for providing technical support.

References

[1] KHAN A, HASSAN T, SHAFAY M, et al. Tomato maturity recognition with convolutional transformers [J].
Science Reports, 2023, 13: 22885.

[2] WU Q, HUANG H, SONG D, et al. YOLO-PGC: A tomato maturity detection algorithm based on improved
YOLOvL1I [J]. Applied Sciences, 2025, 15(9): 5000.

[3] GOUIDER C, SEDDIK H. YOLOv4 and branch attention: An improved approach to real-time object detection
[C]//2022 1EEE Information Technologies & Smart Industrial Systems (ITSIS). Paris, France: IEEE, 2022: 1-6.

[4] WANGCY, LIAOHY M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN
[C]/72020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle,
USA: IEEE, 2020: 1571-1580.

[5] VINA A. Comparing Ultralytics YOLO11 vs previous YOLO models [EB]. Ultralytics, 2025-04-02.

40



