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To improve the accuracy of imputing missing maintenance engineering data, an
ensemble learning method integrating three algorithms—XGBoost, Support Vector Machine
(SVM), and Multilayer Perceptron (MLP)—is proposed. This method constructs three base
learners (XGBoost, SVM, and MLP) to establish the nonlinear mapping relationship
between maintenance measures and multi-dimensional influencing factors through
supervised learning. A soft voting ensemble strategy based on probability weighting is
adopted to optimize the comprehensive decision-making effect of the model output, and the
imputation performance of each model is systematically evaluated. The research results
show that the proposed ensemble learning method achieves an accuracy of 99% in missing
data imputation, which is significantly superior to the single models MLP (54%), SVM
(72%), and XGBoost (77%). This verifies the effectiveness and superiority of the method in
imputing missing maintenance data.

highway pavement, pavement management data, data imputation, ensemble
learning, road maintenance, base learner

In recent years, with the increase in service life, asphalt pavements in China have entered a large-
scale maintenance stage. Various degrees of damage have widely occurred, seriously affecting the
pavement performance, and scientific and reasonable maintenance measures are urgently needed.
When formulating maintenance decisions, it is necessary to make full use of historical pavement
management data, and the quality of pavement management data directly affects the accuracy of
decisions. Pavement management data mainly include five types of data—pavement structure
materials, traffic volume, climatic environment, annual pavement condition detection, and
maintenance engineering data. Among them, pavement condition detection data are mostly collected
by multi-functional detection vehicles. Although certain deviations may occur due to vehicle or
equipment offset during the detection process, the overall data quality is relatively reliable;
maintenance engineering data mainly rely on manual daily records, which may have human errors
such as omissions or miscalculations. The formulation of pavement maintenance measures is usually
based on factors such as the previous year's pavement condition, traffic volume, pavement age, and
climatic conditions. To fill the missing information in maintenance engineering data, it is necessary
to establish a correlation model between it and data such as pavement condition, traffic volume, and
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climatic environment. Therefore, before analysis, the pavement condition detection data should first
be properly corrected to improve the reliability and consistency of the overall data.

In terms of data correction, Liu Tongbin [1] proposed that for a small amount of discontinuous
missing values, fixed values, nearest neighbor imputation, and interpolation methods can be used for
supplementation; continuous missing values are not processed; outliers can be handled by direct
deletion, being regarded as missing values, and mean correction. Xiao [2] et al. used the K-Nearest
Neighbour method for interpolating outliers and missing values in pavement management data. Guo
et al. [3] eliminated unreasonable data using the interquartile range method. Han [4] proposed a data
cleaning framework for asphalt pavement detection data based on neural networks, using artificial
neural networks to clean abnormal data.

In terms of data imputation, Gao et al. [5,6] successively established maintenance engineering
data monitoring models based on Bayesian models and Convolutional Neural Network (CNN)-Long
Short-Term Memory (LSTM) combined models (CNN-LSTM) to impute detected missing items;
they also found that CNN-LSTM can capture the temporal characteristics of single pavement
condition indicators and the spatial attributes of multiple pavement condition indicators, achieving a
maximum accuracy of 87.5% without any feature extraction process. However, this accuracy is not
sufficient as a reliable basis for maintenance decision-making. Zhang Haijiao [7] proposed a set of
methods for identifying outliers and imputing missing values in maintenance data based on neural
networks. He eliminated maintenance measures in abnormal data, and used normal data and neural
network theory to construct the nonlinear mapping relationship between maintenance measures and
other pavement factors to fill appropriate maintenance measures for abnormal data. The results
showed that the proportion of abnormal data in pavement maintenance data decreased from 42.75%
to 8.47%. Xiao Feng [8] proposed a method for imputing missing maintenance engineering data
based on neural network models, and established a comparison between multi-class Logistic
regression and maintenance engineering imputation models. The results showed that the prediction
accuracy of the maintenance engineering imputation model based on neural networks was 98.02%,
which was 17.63% higher than the latter. Huang Guodong [9] proposed a data cleaning method
based on support vector machines for water supply pipe networks, which was verified with a case
study of a certain city. The results showed that the data cleaning method based on support vector
machines can effectively identify and repair outliers. Lu Xin [10] conducted data cleaning on the
relevant characteristics of pavement smoothness based on the eXtreme Gradient Boosting
(XGBoost) network, and predicted pavement smoothness combined with maintenance history. The
results showed that this method has high prediction accuracy.

In summary, existing studies have proposed a variety of effective methods in data correction,
including statistical imputation, K-nearest neighbor method, and neural network frameworks.
However, there are still obvious deficiencies in the specific field of maintenance engineering data
imputation: although complex models such as CNN-LSTM and logistic regression have been
applied and shown potential, their accuracy is not as good as that of neural networks, and the
effectiveness of some models that perform well in other fields in maintenance data imputation has
not been verified, nor is there a systematic performance comparison with neural network models.
More importantly, current research lacks an integration strategy that can effectively integrate the
advantages of different models when the imputation effect of a single model is not good. To address
the above problems, this paper proposes an ensemble learning-based maintenance engineering data
imputation method, integrating the advantages of three algorithms: XGBoost, Support Vector
Machine (SVM), and Multilayer Perceptron (MLP); constructs three base learners (XGBoost, SVM,
and MLP) to establish the nonlinear mapping relationship between maintenance measures and multi-
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dimensional influencing factors through supervised learning; adopts a soft voting ensemble strategy
based on probability weighting to optimize the comprehensive decision-making of the outputs of
these three models; through a large number of field test data experiments and comparing the
performance indicators of each base learner and the ensemble model, it is shown that the model has
good application value in the imputation of pavement maintenance engineering data, aiming to
provide effective support for the improvement of pavement management data quality and scientific
utilization.

2. Principles and methods of the cleaning model

Pavement condition data and maintenance data in pavement management data are interdependent
and cannot be cleaned simultaneously. Moreover, the omission of maintenance engineering data is
the most serious, followed by errors in pavement condition detection values. This paper uses the
interpolation method to correct the abnormally decreasing or increasing values of pavement
condition data in adjacent years; supplements the missing maintenance engineering data according
to pavement condition data and other relevant pavement management data.

2.1. Correction model for pavement condition data

Pavement condition data are derived from the Comprehensive Intelligent Condition Survey (CiCS)
system, and this paper only uses the Pavement Condition Index (PCI) as a representative indicator
for analysis. Among the pavement condition indicators of the research section, the PCI data are
complete and have a large variation range, which is conducive to training during maintenance
engineering imputation. Therefore, the pavement condition indicator selected in this paper is PCI. It
is found that the variation law of some PCI data is inconsistent with reality. To improve the accuracy
of model identification, it is necessary to correct the abnormal PCI data.

In this study, the interpolation method is used to correct abnormal PCI data to improve data
quality and the accuracy of subsequent model identification. The confirmation of abnormal PCI data
is to determine a reasonable variation interval through reliability analysis. The value with an
improvement rate of 5% (95%) is selected as the lower (upper) limit of PCI improvement, that is,
under the maintenance measure, there is a 95% (5%) probability that the PCI improvement value is
greater (smaller) than a certain number. If a data point is outside this range, it is considered an
abnormal data point. This study uses the linear interpolation method to calculate the corrected PCI
value y(t) for the intermediate year t (ti <t < ti+1), and its calculation formula is:

y(t) = yi + L5 (¢ — ti) (1)

2.2. Imputation model for pavement maintenance data

The formulation of pavement maintenance measures is usually determined based on factors such as
the previous year's pavement condition, traffic volume, pavement age, and climatic conditions.
Therefore, before imputing missing maintenance engineering data, it is necessary to establish the
mapping relationship between the type of maintenance engineering and variables such as the
previous year's PCI, traffic volume, and climatic environment. This study uses three models—MLP,
SVM, and XGBoost—to fit the mapping relationship between the type of maintenance engineering
and relevant factors; the ensemble learning model adopts a soft voting ensemble strategy based on
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probability weighting to optimize the comprehensive decision-making effect of the outputs of these
three models.

2.2.1. Imputation model based on Multilayer Perceptron (MLP) algorithm

The imputation model based on the Multilayer Perceptron (MLP) algorithm has a fully connected
structure, consisting of three parts: an input layer, a hidden layer, and an output layer.

According to the historical traffic volume and PCI data provided by enterprises and the climatic
data from the China Meteorological Data Network, different explanatory variables have different
ranges. Therefore, each explanatory variable needs to be standardized, as shown in Table 1. Among
them, the total number of high-temperature days refers to the number of days in a year with an
average daily temperature higher than 30°C; the total number of low-temperature days refers to the
number of days in a year with an average daily temperature lower than 0°C; pavement age refers to
the duration from the construction year to the data collection year.

Table 1. Data standardization methods

Feature Name Original Range Processing Method Processing Formula
Traffic Volume (X1) 500-30000 vehicles/day =~ Dimension Normalization X1/1000

Total Low-Temperature Days (X2) 0-100 days Linear Scaling X2/10
Total High-Temperature Days (X3) 0 Removal —
Annual Precipitation (X4) 0-10000 mm Removal —

Previous Year's PCI (X5) 60-100 Centralization X5-60

Current Year's PCI (X6) 60-100 Centralization X6-60

Pavement Age (X7) 10-15 years Dimension Compression X7/10

PCI Difference (X8) -20-20 Weight Enhancement X8*2

The hyperparameters of the neural network include the number of hidden layers, the number of
neurons in the hidden layers, activation function, loss function, batch size, number of epochs,
learning rate, optimizer, and weight initialization method [7]. In this study, four different
combinations of hidden layer structures are set: (32, 32) - two hidden layers, (64, 64) - two hidden
layers, (64, 16, 64) - three hidden layers, and (32, 64, 32) - three hidden layers. The number of
neurons in the hidden layer is approximately the sum of 2/3 of the number of neurons in the input
layer and the number of neurons in the output layer [11]. The activation functions are ReLLU, Tanh,
and Logistic (Sigmoid).

Neuron output calculation: For a certain neuron in the hidden layer or output layer, its output is:

Where: x; is the input feature or the output of the neuron in the previous layer; w;; is the
connection weight; b; is the bias term; o is the activation function.
Loss function:
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L =—wyrlog Y. (v") 3)

Where yk is the true label, and Yk is the model prediction probability.
Optimization algorithm: SGD (Stochastic Gradient Descent):

w=w-—1n-VL 4)

Adam is an optimization algorithm combining momentum and adaptive learning rate. It combines
pavement maintenance measures, their corresponding influencing factor data, and neural network
theory, determines the model results based on the grid search method, and constructs a pavement
maintenance engineering data imputation method.

2.2.2. Imputation model based on Support Vector Machine (SVM) algorithm

For pavement maintenance engineering data Y (y1, y2, ..., yt), support vector machine is used for
regression fitting. Independent variables X (x1, x2, ..., xI) are selected according to the strength of
correlation. First, find a mapping ¢(x) to map the input sample space to a high-dimensional feature
space, and then use a linear function for regression. The regression function is shown in Equation

(%):
f(z)=w" -p(z)+b (5)

Where b is the threshold; w is the regression parameter.
According to the structural risk minimization principle of statistical learning theory, find the
optimal w and b, and the optimization problem is shown in Equation (6):

min —;wTw—FCEﬁ:l (& + ¢i)
s.t. y;—w-p(x;) —b<e+¢
| w-o(@)+b—y; <e+(

&,¢>0, 1=12,...,1 (6)

Where C is the penalty parameter; € 1is the loss function, an inherent parameter of the support
vector machine; &;,(; are slack variables that control the fitting error exceeding the precision. To
solve the above equation, the Lagrangian function is introduced, as shown in Equation (7):

1

L (w,b,&;,¢) = EwTerCZi:l (&i+C) =D ai(e+&+yi+w- (i) —b)
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—Ya; (e+Ci+yi+w- o (xi) +b) — X (ki + ni"¢i) 7)

Where ai, ai*, ni, ni* are Lagrange multipliers. To obtain the minimum value, the partial
derivatives of the parameters w,b,&;,(; should all be zero. The convex optimization problem is

transformed into Equation (8):

st S, (ai — a:) =0

*
Ogai,ai SC

Where K( z; - z; = ¢ (z;)¢ (x) ) is the kernel function.

Commonly used kernel functions include: radial basis function, polynomial function, linear
function, etc. According to the correlation between independent variables and dependent variables of
the monitoring data, this paper adopts the linear kernel function. The partial parameters where (
a; — a: ) is not zero are the support vectors (SV) in the problem. The linear regression estimation
function obtained through learning is shown in Equation (9):

F@) = Ypesv (@i—a;) - K (zi,z) +b )

2.2.3. Imputation model based on XGBoost algorithm

XGBoost (eXtreme Gradient Boosting) is an efficient gradient boosting tree algorithm, and its core
objective function consists of a loss function and a regularization term. For multi-classification
problems, the model is constructed by optimizing the following objective function:

Obj(8) =31y L (yn,¥T1) + Shy @ (fk) (10)

Where: L (yi, 372) is the multi-class cross-entropy loss function; p. (z;) is the class probability
output by the Softmax function; € (f) is the regularization term; T is the number of leaf nodes; w
is the leaf weight; ~, A\, a are regularization coefficients.
Gradient boosting process:
The model constructs K trees through additive training iteration:
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—_——

yz(t) = yz(-t_l) +nf: (x;) (11)

Where 7 is the learning rate, and each tree f; is generated through a greedy algorithm. When
splitting nodes, the gain is maximized:

H+x " Hptx  H+Hptx

Gain — 1 [ G 3 <GL+GR>2]
2 (12)
-

Where G =)>g; and H =) h; are the first and second derivatives of the loss function
respectively; parameter optimization uses grid search (GridSearchCV) to find the optimal
hyperparameter combination in the predefined space:

Oopt = arg max Accuracycy (13)
fcparam_grid

The parameter space includes key parameters such as learning rate 7, number of trees K , and
tree depth d . Five-fold cross-validation is used to ensure the generalization ability of the model.

This study adopts an ensemble learning strategy to improve classification accuracy. A single
classification algorithm may lead to deviations in evaluation results due to different adaptability to
different features of the dataset [12]. The ensemble learning model combines three different
classifiers—XGBoost, Support Vector Machine (SVM), and Multilayer Perceptron (MLP)—to
further improve the classification accuracy of the model. The ensemble learning strategy gives the
final result by integrating the training effects of different base learners. The commonly used voting
methods for models include the hard voting strategy of majority voting and the soft voting decision
based on the weighted average of classification probabilities. Ensemble prediction is performed
through soft voting or hard voting. This method aims to utilize the advantages of different classifiers
and improve the overall classification performance.

Soft voting integrates based on the probability distribution predicted by each classifier. A specific
weight w; is assigned to each classifier Ci, T is the number of classifiers, Cij represents the
probability that the i-th classifier predicts to belong to class j, and H7 (:Jc) represents the probability

that x belongs to class j. The final output is shown in Equation (14), and Equation (15) is the
predicted label § of the click behavior.

Hi(z)= 4 X7 w0l (x) (14)
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y:argmax[HO(w),Hl(w) (15)

Hard voting is based on the majority vote of the predicted classes of each classifier. For sample
X, the final predicted class ¥ is determined by the following formula:

y = mode {hi (z),hy (), h3(x),...,hy (z)} (16)

Where h; (z) is the predicted class of sample X by the M-th classifier; mode means taking the
mode.

Comparing the two voting strategies, compared with soft voting, hard voting only considers
classification labels and ignores the confidence of each model in the class, which may lead to
information loss; when the probabilities predicted by the base learners are close, hard voting cannot
effectively distinguish the uncertainty of the model, which may reduce the error robustness of the
ensemble model. Therefore, soft voting can not only improve the generalization ability of the
ensemble model but also make the prediction result closer to the statistical optimal solution.

First, the entire original data are randomly divided into a training set and a test set in an 8:2 ratio;
among them, the MLP model uses 10% of the training data as a validation set to prevent overfitting;
the three base classifiers are trained separately, and each model undergoes an independent
hyperparameter optimization and cross-validation process. The ensemble learning model loads and
processes the training data and prediction data, and determines the final class through soft voting.

The MLP model first initializes an MLP classifier with an early stopping mechanism, with a
maximum number of iterations of 2000. By reserving 10% of the training data as a validation set,
dynamic monitoring of the training process is achieved to prevent overfitting; the performance of
different hyperparameter combinations is systematically evaluated through grid search combined
with five-fold cross-validation (cv=5); the accuracy rate is used as the optimization index to ensure
the statistical reliability of parameter selection. After determining the optimal parameters, the model
is retrained with the best configuration, and finally, prediction is performed on the independent test
set. Eventually, the optimal parameters of the model are: the hidden layer adopts (64, 64), the
activation function adopts 'relu’, and the optimization algorithm adopts 'sgd'".

The SVM model first initializes an SVC classifier, sets probability=True to enable the probability
estimation function; sets a parameter grid including regularization parameter C (10/50/100), kernel
function ('linear’, 'poly', 'rbf'), kernel coefficient ('scale', 'auto'), and polynomial order (2, 3); through
five-fold cross-validation, searches for the optimal parameter combination with accuracy as the
evaluation index. After obtaining the optimal parameters and the corresponding validation score, the
final model is retrained with the optimal configuration. Eventually, the optimal parameters of the
model are: the regularization parameter C is 10, the kernel function adopts 'poly', the kernel
coefficient adopts 'auto’, and the polynomial order is 2.
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The XGBoost model follows the machine learning paradigm of Gradient Boosting Decision Tree
(GBDT). First, initialize an XGB classifier, clarify the type and number of parameters, and define
multi-class logarithmic loss as the evaluation index; construct a search space for 8 key
hyperparameters: learning rate (0.01, 0.1, 0.001), number of trees (100, 200, 300), maximum depth
(3, 5, 7), subsample rate (0.7, 0.8, 0.9), feature sample rate (0.7, 0.8, 0.9), L1/L2 regularization terms
(0, 0.1, 0.5), and minimum leaf sample weight (1, 3, 5). Through GridSearchCV for five-fold cross-
validation, after evaluating 6561 parameter combinations, the accuracy rate is used as the
optimization target, and parallel computing is used to improve the search efficiency. After obtaining
the optimal parameter combination, the best model is reconstructed and its performance is evaluated
on the independent test set. Eventually, the optimal parameters of the model are as follows: learning
rate is 0.1, number of trees is 100, maximum depth is 5, subsample rate is 0.9, feature sample rate is
0.7, L1 regularization parameter is 0, L2 regularization parameter is 0.1, and minimum leaf sample
weight is 1.

The imputation effect of missing maintenance records is evaluated using four indicators: Accuracy,
Precision, Recall, and F1-score. The following table shows their calculation formulas. True Positive
(TP): the number of positive classes predicted as positive classes; True Negative (TN): the number
of negative classes predicted as negative classes; False Positive (FP): the number of negative classes
predicted as positive classes (Type I error); False Negative (FN): the number of positive classes
predicted as negative classes (Type II error) [13].

Table 2. Calculation formulas of model evaluation indicators

Evaluation Indicator Formula
Accuracy Accuracy= TP+F1£II\DITFTE+TN TP+’1£IP\>II’E]:§+TN
Precision Precision= %EFP
Recall Recall= %EFN
Fl-score F] _ 9% Precision*Recall

Precision+Recsll

To verify the applicability of the proposed ensemble model in practical engineering applications, the
pavement management data of a certain expressway in Shanxi Province are used for effect
verification. This expressway is a two-way four-lane road. Pavement condition data are collected
with one measuring point every 1 kilometer, and a total of 3680 Pavement Condition Index (PCI)
detection values have been accumulated from 2015 to 2024. The time arrangement of pavement
detection and maintenance is as follows: pavement condition detection is carried out every
December, maintenance is implemented around June of the following year, and detection is carried
out again in December of the same year, forming an annual cycle of "detection—maintenance—re-
detection". Taking a section of this expressway as an example, the PCI records and corresponding
maintenance measures of two pavement units from 2015 to 2024 are counted.

According to the pavement management data, there are multiple logical contradictions between
the time series of pavement condition detection and the time series of maintenance measures. It is
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speculated that data anomalies may come from the following three aspects: (1) missing manual
maintenance records; (2) errors in existing maintenance records; (3) errors in PCI detection values.

4.1. Correction results of pavement condition data

To improve data quality, this study evaluates the rationality of PCI changes based on the concept of
reliability. There are four types of historical maintenance measures for this section: surface
regeneration repair, milling and resurfacing, ultra-thin wearing course overlay, and no maintenance.
The distribution of PCI improvement values in the second year after the implementation of various
measures at different percentiles is counted. Based on statistics, the 5th percentile value is taken as
the lower limit of PCI improvement, and the 95th percentile value is taken as the upper limit to
construct a reasonable interval for PCI changes under various maintenance measures, as shown in
Table 3.

Table 3. Reasonable interval of PCI changes

Maintenance Measure Lower Limit Upper Limit
No Maintenance -3.96 -31.48
Milling and Resurfacing 0.23 28.34
Ultra-thin Wearing Course Overlay 1.26 31.36
Surface Regeneration Repair -3.45 8.84

For abnormal PCI samples outside the reasonable interval, this study uses the interpolation
method for correction, and finally obtains the cleaned pavement condition data, providing a reliable
basis for subsequent model verification.

4.2. Imputation results of maintenance engineering data

To effectively repair the problem of missing maintenance records in pavement management data,
this study constructs an ensemble learning model that integrates three classifiers with different
principles: XGBoost based on tree method, SVM based on kernel method, and Multilayer
Perceptron (MLP). Through the ensemble strategy, the bias and variance of a single model can be
effectively reduced, and the soft voting mechanism is used to integrate the prediction probabilities of
each model to improve the overall classification performance.

The results show that the proposed ensemble learning model achieves an accuracy of 99% in the
maintenance measure classification task, which is significantly superior to each single model.
Among them, the accuracy rates of MLP, XGBoost, and SVM are 54%, 72%, and 77% respectively.
As shown in Figure 1, a further comparison of the performance of each model on multiple
evaluation indicators shows that the ensemble model is significantly superior to any single model in
all indicators.
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Figure 1. Comparison of imputation effect evaluation indicators of each model
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Figure 2. Confusion matrix of maintenance measure prediction results for test samples

This study uses the ensemble model to impute missing maintenance engineering data. Figure 1
shows the detailed evaluation results on four types of maintenance (no maintenance, surface
regeneration repair, milling and resurfacing, ultra-thin wearing course overlay). It can be seen from
the figure that the accuracy, precision, recall, and F1-score obtained on the four types of samples.
The results show that the Fl-score of all classes is higher than 0.95, indicating that the ensemble
learning model has good and stable data repair ability in maintenance engineering data imputation.
For 195 test samples, the number of pavement units whose predicted maintenance measure type is
the same as the actual maintenance measure type is 194 (as shown in Figure 2).

5. Conclusion

Aiming at the frequent occurrence of missing maintenance engineering records in pavement
management data, the ensemble learning algorithm proposed in this paper systematically evaluates
the data imputation effect of the model from multiple dimensions such as accuracy, precision, and
recall. The main conclusions are as follows:

(1) In the process of pavement condition data cleaning, the reasonable intervals of PCI changes
corresponding to four maintenance measures are determined through the statistical percentile
method. The lower limits of PCI changes for no maintenance, surface regeneration repair, milling
and resurfacing, and ultra-thin wearing course overlay are -3.96, -3.45, 0.23, and 1.26 respectively,
and the upper limits are -31.48, 8.84, 28.34, and 31.36 respectively.
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(2) Single models have limited performance in maintenance data imputation tasks: the average
accuracy rates of MLP, SVM, and XGBoost are 54%, 72%, and 77% respectively; the average F1-
scores are 0.54, 0.74, and 0.64 respectively; the average recall rates are 0.605, 0.755, and 0.655
respectively; the average precision rates are 0.701, 0.735, and 0.648 respectively.

(3) The ensemble learning model proposed in this paper is significantly superior to single models
in all evaluation indicators. Its comprehensive accuracy rate reaches 99%, and the average values of
Fl1-score, recall rate, and precision rate are 0.9875, 0.9825, and 0.9925 respectively, showing
excellent maintenance data repair ability and engineering applicability.

The imputation method proposed in this study is a probability-based integration, which reduces
the bias of a single model and has better tolerance for data noise and outliers. Moreover, the method
in this study can not only be applied to the imputation of missing data but also to data prediction.
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