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Abstract.  This paper develops a local discontinuous Galerkin (LDG) method based on
generalized numerical fluxes for solving traveling wave solutions of the modified Buckley-
Leverett equation. To achieve efficient computation, the original equation is reformulated
into a first-order system by introducing auxiliary variables, followed by spatial discretization
using the DG method, while the explicit third-order Runge-Kutta method is adopted for
temporal discretization. Based on the antisymmetry of the discrete spatial operator, the
stability of the scheme under the energy norm is rigorously established. Numerical
experiments demonstrate the robustness of the proposed method in handling convection-
dominated problems with Riemann initial data, confirming its capability to accurately
capture the shock structures.
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1. Introduction

We focus on solving the modified Buckley-Leverett (MBL) equation with homogeneous boundary
conditions [1] that models two-phase flow in porous media with dynamic capillary pressure effects
[2]

(1)

where constants    denote the viscosity and dynamic capillary pressure coefficients,
respectively. The nonlinear flux function f is defined as

(2)

where     denotes the mobility ratio between the two phases. The third-order mixed
derivative term      accounts for dynamic capillary pressure effects, essential for explaining
saturation overshoot phenomena. We consider the Riemann initial condition      for  

 ; otherwise,    , where     denotes the injection saturation.

Ut + f(U)x = εUxx + ε2μUxxt,x ∈ Ω = (0, 3)

ε,μ ≥ 0

f(U) = ,M > 0, 0 ≤ U ≤ 1
⎧⎪⎨⎪⎩ 0,U < 0,

U 2

U 2+M(1−U)2

1,U > 0

M = 1/2

ε2μUxxt

U0 = UB

x ∈ (3/4,9/4) U0 = 0 UB ∈ (0,1]
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Theoretical analysis of the MBL equation has been extensively studied. Van Duijn et al. [3]
revealed that the traveling wave solution profiles of this equation depend on the Riemann initial
value parameters and the coefficients of high-order terms, including classical shocks, non-classical
undercompressive shocks, and oscillatory profiles. Further theoretical developments include global
existence results [4], shock wave admissibility criteria [5], uniqueness of weak solutions [6], and
adaptive mesh investigations [7].

Various numerical methods for pseudo-parabolic equations include finite difference and Eulerian-
Lagrangian methods [8], central schemes [9], and operator splitting methods [10]. Theoretical error
estimates have also been established for relevant problems, covering local discontinuous Galerkin
(LDG) methods [11,12], spectral methods [13], and upwinding strategies [14]. However, all these
convergence results rely on the assumption that exact solutions are sufficiently smooth. For non-
smooth initial data, optimal convergence may fail, especially for convection-dominated equations,
which may exhibit physical oscillations or even non-convergence.

Based on this, this paper constructs an LDG method with generalized numerical fluxes for the
convection-dominated MBL equation under Riemann initial data. The goal is to enhance numerical
stability and computational effectiveness, particularly in capturing sharp discontinuities and
suppressing spurious oscillations. Its key highlight is introducing properly designed auxiliary
variables and exploiting their intrinsic spatial-temporal derivative transformation relationships,
enabling high-order explicit time marching of the decoupled system and significantly improving
computational efficiency.

The remainder of this paper is organized as follows. Section 2 presents the LDG scheme and its
stability analysis. Section 3 presents numerical experiments. Finally, Section 4 makes some
conclusions.

2. LDG method and stability analysis

2.1. Notations

Let     be a partition of a given domain    . Denote the cell length as 
  , and   . We assume     is a quasi-uniform

mesh in this paper, namely, there exists a fixed positive constant      independent of h, such that  
  for any j , as   .

The discontinuous finite element space is     , where  
  denotes the space of polynomials of degree at most k>0. At each interface     , we define 

   and     , where  

  are one-sided limits and    is a given weight.

2.2. Semi-discrete LDG scheme

Introducing auxiliary variables   , equation (1) is rewritten as two first-
order differential systems where time and space variables are completely decoupled:

(3)

Ωh = {Ij = (xj−1/2,xj+1/2)} Ω

hj = xj+1/2 − xj−1/2, j = 1,2, . . . ,N hj = maxj{hj} Ωh

υ

υh ≤ hj ≤ h  h → 0

Vh = {v(x) : v|Ij ∈ Pk(Ij), ∀j} Pk(Ij)

xj+1/2

⟦v⟧j+1/2 = v+
j+1/2 − v−

j−1/2 {{v}}β

j+1/2 = βv−
j+1/2 + (1 − β)v+

j+1/2

v±
j+1/2 = limx→x±

j+1/2
v(x)  β

W = Ut,P = Wx,Q = Ux

Ut = W ,Qt = P ,W + (f(U) − εQ − ε2μP)x = 0,P = WX
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The semi-discrete LDG scheme seeks    such that

(4)

(5)

(6)

hold for any test functions    . The DG discretizations are

We take the upwind-biased numerical flux   for nonlinear flux (2),

and the generalized alternating fluxes      for high-order
terms in (1)(referred as to generalized numerical fluxes). To ensure the stability of scheme, we take

  , since     here.
The initial solutions      and     , where      denotes the local     -

projection. Until now, we have finished the definition of our scheme.
Theorem 1 (Stability). Let     be the solution of scheme (3-6). Define the energy norm  

 . Then, there holds for any    that  
 .

Proof. We proceed with the stability analysis in three steps.
Step 1: Derive the energy equation. Integrating (6) with respect to time over     obtains that 

  . Choosing test functions      and    , and
collecting the obtained three identities, we yield:

Then, by using the antisymmetry property of DG discrete operator [15], namely: for any  
  , and a given    , there holds    , we obtain the

energy evolution equation:   

 z(t) = (zuq, zwp) = (u, q,w, p) ∈ (Vh)4

(ut, vu) = (w, vu), (q, vq) = (p, vq)

(w, vw) − [H f(u, vw) − εH 1−θ(q, vw) − ε2μH 1−θ(p, vw)] = 0

(p, vp) + H θ(w, vp) = 0

vu, vq, vw, vp ∈ Vh

H β (ϕ,φ) = ∫
 

Ωh

ϕφxdx +
N

∑
j=1

ϕ
β
j+1/2⟦φ⟧j+1/2,

H f(ϕ,φ) = ∫
 

Ωh

f(ϕ)φxdx +
N

∑
j=1

f̂(ϕ)j+1/2 ⟦φ⟧j+1/2
.

f̂(u)j+1/2 = f({{u}}θ)
j+1/2

ŵ = {{w}}θ, p̂ = {{p}}1−θ, q̂ = {{q}}1−θ

 θ > 1/2 f ' ≥ 0
u0 = PhU0(x) q0 = PhQ0(x) Ph L2

(u, q,w, p)

∥zuq(t)∥2 = ‖u‖2 + ε2μ‖q‖2 t ∈ (0,T ]  ∥zuq(t)∥2 ≤ ∥zuq(0)∥2

(0, t]

(q, vp) + H θ(u, vp) = 0 vw = u, vp = εp vp = ε2μp

1

2

d

dt
[‖u‖2 + ε2μ‖q‖2] + ε[H 1−θ(q,u) + H θ(u, q)] + ε2μ[H 1−θ(p,u) + H θ(u, p)]

= H f(u,u).

ϕ,φ ∈ H 1(Ih)  α ∈ R H 1−α(ϕ,φ) + H α(φ,ϕ) = 0
1
2

d
dt
[‖u‖2 + ε2μ‖q‖2] = H f(u,u).
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Step 2: Prove non-positivity of    . Define the entropy flux associated with the flux
function     as   . Expand the semi-linear operator:

where we have used the homogeneous boundary conditions. For any interface, let 
  . Since     ,      lies between     and    . Using the non-

convexity of     and the integral mean value inequality, we analyze two cases:
If    : As      is non-decreasing and    , the non-convexity of      implies 

  . Multiplying both sides by     preserves the

inequality:    

If     : Rewrite the integral as     and use    .

Multiplying by     (reversing the inequality once) and noting 

 , we still obtain:   .

Thus, we obtain   

Step 3: Final energy estimate. Substituting      into the energy equation gives  
 

3. Numerical experiments

In (1), we consider   . We investigate the effects of flux parameter     and
polynomial degree   . We use the LDG method to compute the solution at the final time 

 .
Effect of θ: We fix    and investigate the solution characteristics corresponding to different  

   values. According to the traveling wave solution theory in [3], when    , the
exact solution includes a non-monotone plateau in the right portion. The numerical solution obtained
by our LDG method with    , as shown in Fig. 1, agrees well with the exact solution in terms
of its form. Similarly, when    , the theory in [3] indicates that the exact solution
includes a non-monotone plateau in the right part. Our numerical results, as shown in Fig. 2 for 

 , clearly delineate the theoretical characteristics of the aforementioned exact solution. All
solutions exhibit a non-monotone plateau on the right. From these results, it can be observed that the
influence of      is not significant. Thus, for simplicity, we choose     in subsequent
computations.

H f(u,u)

f(u)  F(u) = ∫  
u
f(s)ds

H f(u,u) = ∫
 

Ωh

f(u)uxdx +
N

∑
j=1

f̂(u)j+1/2 ⟦u⟧j+1/2
= −

N

∑
j=1

⟦F(u)⟧j+1/2 +

N

∑
j=1

f̂(u)j+1/2 ⟦u⟧j+1/2
.

z = θu− + (1 − θ)u+ f ' ≥ 0 f(z) f(u−) f(u+)
f

u+ ≥ u− f θ > 1/2 f

f(z) ≤ 1
u+−u− ∫

u+

u− f(s)ds = ⟦F(u)⟧ u+ − u− ≥ 0

f(z)(u+ − u−) ≤ ∫
u+

u− f(s)ds

u+ < u− ∫
u+

u− f(s)ds f(z) ≤ 1
u+−u− ∫

u+

u− f(s)ds

u+ − u− = −(u− − u+)

∫
u+

u− f(s)ds = − ∫
u−

u+ f(s)ds f(z)(u+ − u−) ≤ ∫
u+

u− f(s)ds = ⟦F(u)⟧

 Hf = −∑j ⟦F(u)⟧j+1/2 + ∑j f̂j+1/2 ⟦u⟧j+1/2 ≤ 0.

H f ≤ 0
d
dt ∥zuq(t)∥2 ≤ 0.

ε = 10−3 θ = 0.7,1.0,1.3
 k = 1,2, 3

 T = 0.5
 k = 3

θ (μ,uB) = (5,0. 52)

N = 512
(μ,uB) = (5,0. 66)

N = 512

θ θ = 1
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Figure 1. Solutions corresponding to ,calculated by the LDG method (where 
 ) (Left: full view; Right: close-up view of the platform area)

Figure 2. Solutions corresponding to ,calculated by the LDG method (where 
 ) (Left: full view; Right: close-up view of the platform area)

Effect of k: Next, we demonstrate the LDG method’s numerical performance for piecewise
polynomials. To verify the scheme’s accuracy, we check predicted plateau height and shock location
via mesh refinement. In [16], for (specific parameter), the exact solution’s right portion jumps to a
plateau then back to 0, plus damped oscillations near (parameter)—features a well-designed scheme
should capture. Fig. 3 shows higher-order polynomial-based numerical solutions capture these
features more accurately. In Fig. 3, we can see that numerical solutions based on higher-order
polynomials are able to capture these key features with greater accuracy. Moreover, theoretical
analysis indicates that when  , the width of the plateau region   of the corresponding
solution increases, and the wavefront oscillations gradually vanish. As illustrated in Fig. 4, the LDG
solutions can accurately capture the profile of the theoretical traveling wave solutions.

Figure 3. Solutions corresponding to ,calculated by the LDG method with 
 from top to bottom ,respectively   (Left: full view; Right:

plateau close-up )

(μ,uB) = (5,0. 52)
θ = 0.7,1.0,1.3,N = 512

(μ,uB) = (5,0.66)
θ = 0.7,1.0,1.3,N = 512

uB = 0.66 ũf

(μ,uB) = (5,0. 52)
θ = 1.0,N = 512,1024,2048, k = 1,2, 3
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Figure 4. Solutions corresponding to ,calculated by the LDG method with 
 from top to bottom ,respectively   (Left: full view; Right:

plateau close-up )

4. Conclusion

We developed an LDG method with generalized numerical fluxes for solving the MBL equation
accounting for dynamic capillary pressure. The equation’s pseudo-parabolic nature (involving mixed
space-time derivatives) complicates discretization and stability analysis, so we designed auxiliary
variables to decompose it into two fully decoupled first-order linear systems—simplifying numerical
implementation and enabling rigorous stability analysis. Leveraging the antisymmetric structure of
DG discretization, we proved the semi-discrete scheme’s stability under the energy norm. Numerical
experiments show the method effectively captures complex wave structures like non-monotone
plateaus and shocks. Future work will focus on error analysis for non-smooth data and adaptive
strategies for convection-dominated cases.
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