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Cells are essential for every living organism, and the balance between cell
apoptosis and cell proliferation is critical for cells to be healthy. Traditional apoptosis—
proliferation models typically represent proliferation as a single aggregated term, failing to
distinguish the biological mechanisms underlying regenerative growth. This study constructs
an ordinary differential equation (ODE) model to explicitly separate two key regenerative
mechanisms: apoptosis-induced proliferation (AIP) and compensatory proliferation (CP).
AIP (Apoptosis-induced Proliferation) is triggered when apoptotic cells undergo death,
secreting signals that stimulate the cell cycle in adjacent proliferative cells. CP
(Compensatory Proliferation), by contrast, is triggered based on tissue size. AIP is more
rapid but less stable than CP. Python was used to simulate three different conditions for a
human thymus: healthy condition, injured condition, and tumor growth condition. The total
cells, proliferative cells, apoptotic cells, and rate of AIP and CP were graphed. Results
demonstrated that AIP induces more rapid cell growth but is unstable and may promote
tumorigenesis, while CP is more stable in increasing cell numbers to reach tissue capacity.
This model provides a quantitative tool for distinguishing pathological from physiological
proliferation, exhibiting clear translational potential in cancer-targeted therapy and
regenerative medicine, particularly in inhibiting AIP-driven malignant progression of
tumors.

Apoptosis-induced Proliferation, Compensatory Proliferation, Ordinary
Differential Equation

Cell apoptosis is a process of programmed cell death. This process eliminates non-functional or
potentially harmful cells. Without such programmed death, aberrant cells remain in the body and
increase the risk of cancer and uncontrolled proliferation. However, excessive or inappropriate
apoptosis can lead to diseases such as Parkinson’s and Alzheimer’s, resulting in tissue degeneration
and atrophy. Importantly, apoptotic cells are not merely removed from tissues but can actively
stimulate neighboring cells to proliferate through apoptosis-induced proliferation (AIP), a
mechanism that plays a key role in tissue maintenance and regeneration. Cell proliferation (CP) is a
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process of cells reproducing themselves. This ensures tissue growth and regeneration. The cell
division from the cell cycle mechanism is an example of the CP, where a parent cell divides into two
daughter cells. In addition to baseline proliferation, tissues employ CP to restore cell numbers
following injury or cell loss, thereby preserving tissue integrity. The balance between cell apoptosis
and proliferation is critical for maintaining human health. Disorders happen when the balance
between them is disrupted.

AIP is a regenerative process where dying cells release mitogenic signals (e.g., via the JNK
pathway) to activate growth factors like Wingless/Wnt, Hedgehog, and DPP/BMP, driving nearby
cell proliferation. This mechanism enables rapid tissue repair post-injury but lacks intrinsic size
control. Persistent apoptotic signaling can cause uncontrolled cell turnover, elevating risks of
hyperproliferation and tumor progression. CP is a regenerative mechanism in which surviving cells
proliferate to restore tissue size after cell loss. Unlike AIP, CP is not triggered by apoptotic signaling
but responds to changes in tissue size or density. CP generally operates more slowly than AIP but is
more stable. As tissue size approaches its normal capacity, CP-driven proliferation decreases and
ultimately ceases, preventing excessive growth. This capacity-dependent regulation makes CP
essential for long-term tissue homeostasis and controlled regeneration.

Although the biological mechanisms of AIP and CP have been characterized individually,
existing mathematical models often treat proliferation as a single aggregate term, failing to
distinguish the differential contributions of these two processes to tissue homeostasis, injury repair,
and tumorigenesis. The objective of this study is to develop an ODE-based model that explicitly
distinguishes apoptosis-induced proliferation and compensatory proliferation. The questions
addressed are: How do AIP and CP differ in their effects on tissue recovery and stability? Under
what conditions does AIP promote rapid regeneration versus pathological overgrowth? How does
CP regulate proliferation to restore tissue size without exceeding carrying capacity? This framework
enables quantitative comparison of physiological regeneration and pathological proliferation.

The dynamic balance between cell proliferation and apoptosis is a fundamental principle governing
tissue homeostasis, regeneration, and disease progression. Early mathematical studies treated cell
populations as relatively homogeneous systems in which proliferation and death compete to
determine net growth [1]. Hardy and Stark's model, though foundational, oversimplifies
proliferation by treating it as a homogeneous process, ignoring the distinct roles of AIP and CP.
While early models focused on homogeneous cell populations, subsequent studies revealed the
complexity of regeneration mechanisms. AIP has been documented across multiple organisms and
tissue types [2]. Different from a subtractive process, Ryoo and Bergmann showed that apoptotic
cells emit mitogenic signals that stimulate proliferation in neighboring cells, directly coupling cell
death to regenerative growth. This paradigm shift established apoptosis as a signaling event.
Mechanistic studies have identified the JNK pathway as a key driver of AIP, triggering the release of
growth factors like Wingless/Wnt, Hedgehog, and Dpp/BMP., which drive adjacent cells into the
cell cycle [3]. Bergmann and Fan further clarified the distinction between AIP and other regenerative
processes by emphasizing that AIP is local, rapid, and signal-driven, but may be unstable when
chronically activated. AIP has been implicated in cancer progression, where sustained apoptotic
signaling can exert selective pressure for apoptosis-resistant, hyper-proliferative clones. Studies
integrating biological experiments with mathematical modeling have shown that CP acts as a
stabilizing feedback mechanism that regulates growth toward a target tissue size or carrying capacity
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[4]. In cancer studies, CP-related feedback loops have been proposed as potential therapeutic targets,
as disrupting these homeostatic signals may limit tumor regrowth after treatment-induced cell death.

Despite extensive biological characterization, few mathematical models explicitly distinguish
between AIP and CP, restricting their capacity to analyze the individual contributions of these
mechanisms to tissue stability [5,6]. Many cancer and regeneration models incorporate apoptosis-
stimulated growth or density-dependent proliferation, but rarely categorize them into
mechanistically interpretable terms. This lack of categorization limits the ability to analyze their
individual contributions to stability, overshoot, and long-term tissue behavior. The present study
addresses this gap by extending classical ODE-based population models to explicitly include distinct
AIP and CP-driven proliferation terms. The model enables direct comparison of rapid, apoptosis-
triggered regeneration versus slower, capacity-driven homeostatic control. This explicit separation
represents a key novelty of the work and provides a mathematically transparent framework for
exploring how differential regulation of AIP and CP may contribute to regeneration, cancer
progression, and degenerative diseases.

Original ODE Model

In Hardy and Stark’s research, their ODE model does not include AIP and CP and is simply
written as rate of change of cells x with time t = rate of production of new cells - rate of death of
cells.

%’tc :yx—ax2 (1)

proliferation rate =y and apoptosis rate = o

A new model is required to explicitly distinguish between AIP and CP.
New Model

P(t) = number of proliferative cells at time t

A(t) = number of apoptotic cells at time t

& —BP+yA+6(K-P-A)-aP (2)

Rate of change of proliferative cells = baseline proliferation + AIP + CP- baseline loss

YA represents the increase by AIP and 6(K—P—A) is for CP, K denotes the carrying capacity, and
K-P-A quantifies the remaining capacity relative to the carrying capacity K. oP is the rate of
proliferative cells transform to apoptotic cells.

4 —aP-2A 3)

Rate of change of apoptotic cells = baseline apoptosis - clearance of apoptotic cells

AA s the rate of apoptotic cell clearance.

Combining the equations for proliferative and apoptotic cells enables simulation of the rate of
change of total cell number, where total cell number.

N(t)=P(t) + A(t) (4)

Simulations were conducted for human thymus cells with the following parameter values:
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o = 0.5 - basal apoptosis rate

B = 0.5 - basal proliferation rate

v = 0.3 - AIP coefficient

0 = 1.3 - CP coeftficient

A =24 - apoptotic cell clearance rate

K =10000 - carrying capacity

The parameter values employed were chosen for biological plausibility and consistency with
reported ranges in experimental and modeling studies of human tissues. The basal apoptosis rate (a
= 0.5) and basal proliferation rate (B = 0.5) represent balanced turnover under homeostatic
conditions, a common assumption in classical apoptosis—proliferation models where steady-state
tissue size is maintained when proliferation and death rates are balanced [1]. Similar relative
magnitudes for proliferation and apoptosis rates have been used in prior ODE-based models of
tissue homeostasis and cancer growth [7].

The apoptosis-induced proliferation coefficient (y = 0.3) reflects the experimentally observed
coupling between apoptotic signaling and short-range proliferative responses mediated by pathways
such as JNK and Wnt signaling [3]. This value was chosen to be smaller than the basal proliferation
rate, consistent with evidence that AIP acts as a modulatory rather than dominant growth mechanism
under physiological conditions. The compensatory proliferation coefficient (6=1.3) was selected to
represent a strong but self-limiting regenerative response when tissue size is far below carrying
capacity, as observed in organ regeneration processes such as liver regrowth following partial
hepatectomy [4].

The apoptotic cell clearance rate (A=24) reflects the rapid removal of apoptotic cells by
macrophages and dendritic cells, which typically occurs on the order of hours rather than days [2].
This fast clearance is essential for maintaining low steady-state apoptotic cell numbers in healthy
tissue. The carrying capacity (K=10,000) represents a normalized tissue size and is used to scale
population dynamics rather than to represent an absolute cell count.

Model validation was conducted at both steady-state and dynamic levels. First, steady-state
behavior was examined under healthy conditions to confirm that the model maintains a stable
equilibrium near the carrying capacity when apoptosis, proliferation, AIP, and CP are balanced. This
behavior is consistent with established theoretical models of tissue homeostasis [6].

Second, dynamic responses were evaluated by simulating injury and recovery scenarios and
comparing qualitative trends with experimental observations from regenerative tissues. In particular,
the model’s recovery dynamics resemble liver regeneration following partial hepatectomy, where
rapid early proliferation is followed by gradual stabilization as tissue size approaches its original
level [4]. The ability of the model to reproduce rapid initial growth, followed by saturation without
overshoot when CP dominates, supports its biological plausibility.

Finally, pathological validation was conducted by reducing apoptotic cell clearance, leading to
sustained AIP activation and uncontrolled growth. This behavior is consistent with experimental and
theoretical studies linking impaired apoptotic clearance and chronic death signaling to tumor
progression [7]. Collectively, these validation approaches demonstrate that the model captures both
physiological and pathological proliferation dynamics.

In the graphs, The blue line represents the number of Proliferating Cells(P), the red line
represents the number of Apoptotic Cells(A).The purple line represents the total amount of cells
(P+A). The green line represents the AIP Rate( yA ) and the brown line represents the CP Rate(
5(K-P-A)).
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Figure 1. Normal healthy human thymus cells simulation
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Figure 2. Injured human thymus cells recovering to healthy
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Figure 3. Thymus tumor (thymomas/carinomas) formation
4. Analysis

In Figure 1, the simulation of a healthy human thymus exhibits stable dynamics, with both AIP and
CP rates maintained at baseline levels. Proliferative and apoptotic cell populations remain stable,
and the total cell number reaches and maintains the carrying capacity. Rapid apoptotic cell clearance
by macrophages and immature dendritic cells ensures that most cells remain proliferative.
Quantitatively, the rates of change for proliferative cells (dP/dt) and apoptotic cells (dA/dt) fluctuate
minimally around zero, indicating near-zero net growth and a balanced homeostatic state.
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Figure 2 illustrates recovery from thymic injury, where initial proliferative and apoptotic
populations are each one-fourth of their carrying capacity. Early in recovery, the high number of
apoptotic cells transiently elevates AIP, accounting for approximately 10% of the net proliferation
rate at the initial time points. CP dominates the later recovery phase, driving proliferation in
response to the tissue capacity deficit. The contribution of CP peaks when total cell number is far
below carrying capacity and gradually decreases to zero as the tissue approaches carrying capacity.
This dynamic can be quantified by tracking the relative contributions of AIP and CP to dP/dt over
time, confirming that CP is the primary mechanism restoring cell numbers in the long term.

Figure 3 shows the formation of a thymus tumor under impaired apoptotic clearance (A = 0).
Initial conditions are consistent with those in Figure 2, but the inability to remove apoptotic cells
leads to a sustained increase in AIP activity. The contribution of AIP to the net proliferation rate
continuously increases during the tumor growth phase, whereas CP contributes only when total cell
numbers are below the carrying capacity. The final effect is uncontrolled proliferation, with total
cells exceeding the nominal capacity and apoptotic cells accumulating, illustrating how loss of
clearance destabilizes tissue homeostasis and drives pathological growth.

The mathematical model presented in this study established a mechanistic framework to distinguish
between AIP and CP, capturing their individual contributions and distinct effects on tissue dynamics
through simulations under different conditions. AIP, triggered by apoptotic cells, is rapid and
localized, providing immediate stimulation to adjacent proliferative cells. This is particularly evident
in the early recovery phase following injury, where apoptotic signals transiently accelerate
proliferation. However, simulations also indicate that dysregulated AIP can destabilize tissue
homeostasis, as observed in Figure 3, where a lack of apoptotic clearance led to uncontrolled growth
and tumor formation. These findings are consistent with experimental observations that chronic AIP
activation can drive hyperproliferation and cancer progression [2,3]. CP, by contrast, is a tissue-level
feedback mechanism that adjusts proliferation according to available capacity. Its stabilizing
influence is apparent in the recovery of injured tissue, where CP ensures that proliferative activity
gradually restores cell numbers to the carrying capacity without overgrowth. This model
demonstrates that CP is less sensitive to immediate apoptotic signals but critical for long-term
maintenance of tissue homeostasis, aligning with previous reports on liver regeneration and other
organ repair processes [5,8].

By incorporating explicit terms for both AIP and CP, this model enables exploration of scenarios
that cannot be captured by conventional ODE models which aggregate all proliferative responses
into a single term [1,6]. Additionally, the model offers potential utility for studying regenerative
therapies and degenerative diseases, providing a quantitative platform for evaluating how
modulation of AIP or CP could influence recovery outcomes.

Despite its ability to distinguish between AIP and CP, the present model has several limitations.
The framework assumes homogeneous cell populations and does not account for cellular
heterogeneity, such as differences between stem cells, progenitor cells, and differentiated cells,
which may influence proliferation and apoptotic responses. Model parameters were selected based
on population-averaged values reported in the literature, and individual variability associated with
age, genetic background, or disease state was not incorporated. In addition, the model focuses on
intrinsic tissue dynamics and does not include feedback from the immune microenvironment;
immune cells such as T cells and macrophages are known to regulate apoptotic clearance and
regenerative signaling, and may substantially affect tissue outcomes. Future extensions could
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address these limitations by incorporating spatially discretized or agent-based formulations to
capture local cell—cell interactions and clustering effects, as well as by applying machine learning
approaches to improve parameter estimation and model calibration by applying experimental or
clinical data. Finally, extending the model to include multiple proliferative subpopulations, such as
stem cells and progenitor cells, would provide a more detailed representation of tissue hierarchy and
improve the model’s applicability to cancer progression, regenerative medicine, and therapeutic
response modeling [9,10].

6. Conclusion

This study establishes an ODE-based model that explicitly distinguishes between AIP and CP,
providing insights into their distinct roles in tissue dynamics. Simulations demonstrate that AIP
facilitates rapid, signal-driven proliferation in response to apoptotic events, whereas CP ensures
long-term tissue stability by responding to capacity deficits. The interplay between these
mechanisms governs tissue homeostasis, regeneration, and, under pathological conditions,
tumorigenesis. By clarifying the contributions of AIP and CP, this model establishes a foundation for
further research into regenerative medicine, cancer biology, and tissue engineering. Future work
may refine the model to incorporate spatial, stochastic, and pathway-specific dynamics, enabling
more precise predictions of tissue behavior under diverse physiological and pathological scenarios
to help research in tumor growth and cancer.
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