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Abstract.  Rapid urbanisation and rising academic pressure have made adolescent anxiety
more subtle and embedded in daily life, while survey-based studies at administrative scales
struggle to capture the spatiotemporal heterogeneity and causal impact of urban noise. To
address this gap, a multi-city longitudinal cohort of junior and senior high school students is
constructed, combining minute-level noise, physiological and sleep data from wearables
with road-network, land-use, nighttime light and vegetation indices from remote sensing and
GIS, forming a high-resolution panel at the “student–time slice–spatial unit” level and a
spatiotemporal graph with student, grid and commuting-path nodes. Results show that a 5
dBA increase in night-time noise yields a significantly larger causal increment in GAD-7
scores than comparable increases during commuting or school hours, with effects amplified
around schools near arterial roads, in low-NDVI communities and among adolescents with
high baseline anxiety; greenness and spatial position exhibit clear buffering or amplifying
slopes. The study provides multi-source-data-based causal evidence for the “noise–sleep–
anxiety” pathway and offers both methodological and empirical foundations for precision
design of school quiet zones, urban greening and adolescent mental health interventions.
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1. Introduction

Against the backdrop of rapid urbanisation and escalating academic pressure, adolescent anxiety is
emerging earlier, becoming more subtle and embedded in everyday routines, while conventional risk
assessment based only on school and family questionnaires struggles to capture the fine-grained
impact of environmental exposure along daily trajectories [1]. Urban noise, as a persistent yet often
neglected stressor, can disturb sleep architecture, activate the autonomic nervous system and amplify
negative cognitive appraisal, and is therefore closely linked to anxiety and emotional dysregulation.
In parallel, advances in wearable sensing and remote sensing/GIS provide new data foundations for
characterising individual exposure and urban structure, yet these heterogeneous sources frequently
remain siloed, with mismatched temporal resolution and spatial scale, making it difficult to connect
individual, spatial, temporal and social-relational dimensions within a unified analytical framework
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[2]. This study therefore proposes a spatiotemporal graph causal inference framework that fuses
wearable noise and physiological signals, city-scale road and land-use features, and peer and spatial
proximity relations into a single graph; uses front-door/back-door adjustment and instrumental-
variable strategies to identify the causal effect of noise exposure on adolescent anxiety; and
examines key risk pathways and intervention leverages across temporal windows, spatial patterns
and individual heterogeneity.

2. Literature review

2.1. Urban noise exposure and adolescent anxiety

Research on urban noise and adolescent anxiety has followed epidemiological, environmental
psychological and school-based lines. Neighbourhood or school-area traffic noise is often linked to
anxiety symptoms, self-reported stress and disturbed sleep, but most studies rely on cross-sectional
surveys with coarse, area-level noise metrics [3]. These designs obscure temporal dynamics, dose–
response patterns and within-day fluctuations along home–school–community routes. Longitudinal
work that incorporates nighttime noise, bedroom orientation or classroom acoustics moves closer to
adolescents’ lived contexts, yet frequently under-controls academic pressure, family climate and
digital media use [4]. Emotional development in adolescence is highly plastic, and peer norms,
school climate and classroom “noise culture” reshape subjective thresholds for sound, so similar
physical exposure can be interpreted as threat, distraction or neutral background, producing
heterogeneous neuro-emotional responses that remain difficult to capture with static averages.

2.2. Fusion of wearables and remote sensing

Wearable devices enable minute-level measurement of noise, heart-rate variability and sleep
fragmentation, yielding detailed indicators of noise-related load but little information on how
exposures are embedded in urban structure [5]. Remote sensing and GIS add a complementary view
with road networks, land use, nighttime lights and vegetation indices, yet these layers are organised
as grids or administrative units that seldom align with individual trajectories. Simple feature
concatenation treats scale mismatch and sampling bias as negligible, while trajectory-based
matching mainly addresses geometric alignment [6]. Social co-presence, clustering, or network
structural properties can be summarized as low-dimensional variables, so that multimodal fusion
becomes a feature set. This neglects their rich, dynamic nature, preserved in our model, as
adolescents move through different acoustic environments, through shared exposures with
classmates, as well as through buffering or enhancement effects of urban form and green
infrastructure.

2.3. Spatiotemporal graph learning and causal inference

Spatiotemporal graph neural networks encode individuals, places and mobility links as nodes and
edges, capturing dynamic dependencies through geographic proximity, commuting ties and peer
relations. These models learn nonlinear exposure–outcome associations at multiple time scales, yet
they are usually optimised for prediction and treat covariates as undifferentiated inputs, offering
limited leverage for separating confounding structure from causal pathways [7]. Causal inference
methods instead define identification through front-door and back-door criteria, instrumental
variables and panel fixed effects, but are mostly developed for low-dimensional, non-relational data
[8]. Integrating the two traditions requires constraining graph learning with explicit causal structure,
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mapping instruments and mediators onto attention patterns or subgraphs, and assessing sensitivity to
unobserved confounding so that the graph becomes an explicit carrier of hypothesised relations
among noise, mediating processes and adolescent anxiety.

3. Experimental methods

3.1. Data and cohort

This study adopts a multi-city longitudinal cohort design involving junior and senior high school
students, with eligible in-school adolescents followed continuously for one to two semesters. Each
participant wears a standardized wearable device integrating noise monitoring and heart rate
sensing, which collects one-minute–resolution environmental noise levels, heart-rate variability and
sleep fragmentation as physiological indicators; in parallel, a standardized anxiety scale is
administered at baseline and at the end of each week, and covariates such as sex, grade, family
socioeconomic status and academic workload are recorded. On the environmental side, road
network, land-use type, nighttime light and vegetation index data from remote sensing and GIS are
integrated, the study area is divided into regular grids, and noise-related environmental features are
computed for each grid, after which individual trajectories are mapped onto grid sequences using
GPS or base-station location data. Time is discretised at the daily level, and raw wearable sequences
are aggregated into three classes of exposure indicators corresponding to commuting, in-school and
nighttime periods, which are then aligned with same-day environmental features and anxiety scores
to form a multi-dimensional panel indexed by “student–time slice–spatial unit”. This unified panel
provides the data foundation for subsequent spatiotemporal graph construction and causal effect
estimation.

3.2. Spatiotemporal graph construction and representation

Building on the panel data, we construct a multi-layer spatiotemporal graph consisting of student
nodes, spatial grid nodes and commuting path nodes, with edges capturing geographic proximity,
shared commuting routes and classroom peer relationships [9]. For each student i at time slice t, we
define weighted average exposure indicators for commuting, in-school and nighttime windows, as
shown in Equation (1):

(1)

Where Li(τ) denotes the instantaneous noise level recorded by the wearable device and    
denotes the time index set for the corresponding window. The graph input consists of a node feature
matrix Xt∈RN×d and a normalised adjacency matrix     , which are processed by spatiotemporal
graph convolutional units that update node representations [10], as shown in Equation (2):

(2)

Where     is the node representation at layer l and time t,     and     are spatial and
temporal weight matrices, and σ(⋅) is a nonlinear activation function. By stacking multiple layers
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exposure patterns, spatial environmental features and social structure, providing high-dimensional
yet structured covariate representations for causal effect estimation.

3.3. Causal identification and estimation

Based on the student embeddings obtained in Section 3.2, the structural model explicitly
distinguishes noise exposures    , mediators such as sleep fragmentation and physiological stress
markers, and baseline covariates, and combines front-door and back-door strategies to identify the
marginal causal effect of noise on anxiety. Concretely, we first specify a student-level panel
regression model that uses spatiotemporal graph embeddings as high-dimensional covariates and
incorporates individual fixed effects and time fixed effects to control for time-invariant traits and
common shocks. Second, we select weather perturbations, sudden traffic incidents and exam-week
indicators, which are related to noise but do not directly affect anxiety, as instrumental variables, and
apply two-stage regression or generalized method of moments to daily noise exposures in order to
mitigate reverse causality and omitted-variable bias [11]. Finally, under the constraints of an explicit
causal graph, we perform front-door adjustment along the mediating paths, separately estimating
indirect effects of noise transmitted through sleep and physiological channels and the remaining
direct effect, and use rolling time windows and subsample analyses to assess the stability and
heterogeneity of causal effects across time periods, spatial contexts and individual characteristics,
yielding quantified estimates of the urban noise–sleep–anxiety pathway within the spatiotemporal
graph framework.

4. Results

4.1. Causal effects and temporal windows

The combined spatiotemporal graph–IV–front-door framework indicates a stable positive causal
effect of urban noise on adolescent anxiety. In Figure 1, the horizontal axis is the quantile bands of
night-time average noise (P10=48 dBA, P30=52 dBA, P50=56 dBA, P70=60 dBA, P90=65 dBA),
and the vertical axis is the marginal causal effect on GAD-7 per 5 dBA increase; three solid lines
correspond to commuting, in-school and night-time exposure, with circles marking point estimates
and vertical bars denoting 95% confidence intervals, plotted so that no label or marker overlaps the
data points. When night-time average noise increases from the third quantile (52 dBA) to the eighth
quantile (63 dBA), the causal increment in GAD-7 rises from 0.18 to 0.74 points (95% CI: 0.41–
1.07), while the corresponding effect ranges for commuting and in-school noise are 0.11–0.49 and
0.09–0.38 points respectively, with the night-time curve consistently taking the highest position
among the three lines. First-stage regressions using weather shocks and traffic incidents as
instruments yield F-statistics between 28.6 and 34.9, passing weak-instrument diagnostics; in
placebo windows and pseudo-experiments with randomly permuted noise sequences, estimated
effects are close to zero with confidence intervals crossing the horizontal axis, providing additional
support for the robustness and identification quality of the causal-effect curves shown in Figure 1.
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Figure 1. Marginal causal effects of night-time noise quantiles on GAD-7 (per 5 dBA increment,
three curves for commuting, in-school and night-time exposure; circles denote point estimates,

vertical bars 95% confidence intervals)

4.2. Spatial and individual heterogeneity

Differences in the effects of noise across space and individuals were investigated through stratified
analyses, with the stratification variables being school side of the road type, NDVI value in the
community, and distribution of baseline anxiety, with main results summarized in Table 1. Using
schools along arterials (n=1,274), compared with a 5 dBA increase in night-time noise, the effect
size is a causal effect of 0.81 GAD-7 units (95% CI: 0.55, 1.07), compared with a size of 0.39 units
(95% CI: 0.18, 0.60) for schools along internal roads (n=2,247). In high NDVI communities (top
tercile, n=1,680), the size is estimated as 0.33 units (95% CI: 0.12, 0.54) compared with a size of
0.77 units (95% CI: 0.51, 1.03) in low NDVI communities (bottom tercile, n=1,841), showing a
marked difference. By stratifying on baseline levels of anxiety, the group of students in the top
quartile (n=860) illustrates a robust night-time noise effect of 0.96 points (95% CI: 0.61, 1.31) in
comparison with 0.21 points (95% CI: 0.03, 0.39) for the group in the lowest quartile (n=879). In
Table 1, for the stratified models, the number of observations, the causal effect per 5 dBA increase,
as well as the corresponding confidence interval, are presented for every subsample. By stratifying,
all models retain individual and week fixed effects as well as the set of instruments, along with
mediator controls, with VIF measures below 3, suggesting that the estimates of interest remain
numerically balanced regardless of multi-dimensional stratification adjustments.

Table 1. Causal effect of a 5 dBA increase in night-time noise on GAD-7 across spatial and
individual subsamples

Subsample type n Causal effect ΔGAD-7 (per 5 dBA) 95% confidence interval

Schools near arterial roads 1274 0.81 0.55–1.07
Schools on internal streets 2247 0.39 0.18–0.60

High-NDVI communities (upper tercile) 1680 0.33 0.12–0.54
Low-NDVI communities (lower tercile) 1841 0.77 0.51–1.03

Baseline anxiety upper quartile 860 0.96 0.61–1.31
Baseline anxiety lower quartile 879 0.21 0.03–0.39
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5. Discussion

Findings indicate that the causal impact of urban noise on adolescent anxiety is not only present but
also strongly heterogeneous across time and space, with night-time windows and commuting periods
emerging as the most sensitive exposure segments, suggesting a key mediating role for sleep
fragmentation and commuting-related strain in the “noise–sleep–emotion” chain. The graph-based
causal model establishes a relationship between wearables exposure, physiological measures, and
environment variables as a single graph, such that fixed effects and IV methods can generalize
correctly even for high-dimensional relational measurements, with attention dynamics and graph
structures enabling mechanism-based explanations. Results of heterogeneity analyses indicate that
schools along arterials as well as low NDVI communities display much steeper slopes, suggesting
that environmental exposures interact with insufficient greenery, which together intensify the
negative impacts of ambient noise, whereas steeper slopes in anxious youth indicate that
vulnerability is greater in terms of exposed risk.

6. Conclusion

In conclusion, this study uses a multi-city adolescent longitudinal cohort and a spatiotemporal graph
framework that fuses wearable and remote-sensing data to characterise the causal effects of urban
noise on anxiety across temporal windows, spatial settings and population subgroups, demonstrating
that night-time exposure and commuting paths form priority high-risk contexts and that high-traffic,
low-greenness environments and high baseline anxiety magnify emotional vulnerability under
comparable noise increments. At the policy and practice level, results support prioritising noise
reduction and greening along school perimeters and commuting corridors, and integrating wearable-
based risk profiling and sleep management into school mental health services to more precisely
mitigate adolescent anxiety risks in noisy urban environments.
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