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Abstract. Climate risk poses significant threats to human life and property. Climate insurance 

can effectively mitigate and disperse these risks. This paper addresses the weakness in weather 

risk prediction for climate insurance formulation by combining Ensemble Empirical Mode 

Decomposition (EEMD) and Autoregressive Integrated Moving Average (ARIMA) models. 

Four models, namely EMD, EEMD, ARIMA, and EMD-ARIMA, were established for modeling 

and forecasting China’s annual precipitation data. The results show that the EEMD-ARIMA 

model can suppress the modal aliasing problem in time series and has the best fit compared to 

other models. This model can more accurately describe the variation in annual precipitation in 

forecasting applications, providing significant predictive value for insurance companies and 

government decisions regarding insurance and climate risk management. 
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1.  Introduction 

From the perspective of the causes and development of climate change, climate risk arises from the 

excessive accumulation of greenhouse gases caused by natural and human activities, leading to global 

temperature rise. This subsequently triggers large-scale climate changes, ultimately posing potential 

losses and adverse impacts on natural systems and human socio-economic systems [1]. With global 

temperatures reaching record highs, people worldwide are increasingly affected by climate risks. In 2023, 

global natural disasters caused total losses of $380 billion, 22% higher than the average level of this 

century. Notably, 95,000 people worldwide lost their lives due to natural disasters, the highest number 

since 2010, and the number of economically significant natural disasters in 2023 set a historical record. 

“Human destiny is in jeopardy,” warned the UN Secretary-General at the 28th United Nations Climate 

Change Conference (COP28) World Climate Action Summit, highlighting the common crisis humanity 

faces. 

Strategies to address climate risk include prevention and control, as well as risk transfer and 

dispersion. Climate risk prevention mainly involves various measures to adapt to and mitigate climate 

change, while risk transfer and dispersion primarily refer to the distribution of risk costs. A report by the 

Intergovernmental Panel on Climate Change on managing the risks of extreme events [2] suggests that 

insurance can be a tool for reducing risks and restoring livelihoods. However, due to the increasing 

severity of losses caused by climate change, government funds can no longer meet current demands. 

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/39/20240599 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

172 



Therefore, adopting climate insurance measures to transfer and disperse risks has become an important 

policy direction for China [3]. 

With the deepening of global economic integration, China, as a developing country, is striving to 

innovate weather insurance, transitioning from traditional agricultural insurance to more flexible 

agricultural insurance [4], aiming to effectively address extreme climate risks and achieve sustainable 

development. Currently, the weather index insurance being piloted in China is an effective means [5] 

that can enhance risk resilience and reduce transaction costs, meeting the diverse needs of farmers. 

However, many issues still exist in reality. Insurance companies’ investment decisions typically do not 

consider climate risk knowledge gained from underwriting, and infrastructure investment decisions 

often lack reflection on climate risks. 

Therefore, designing a scientifically precise insurance model based on weather risk prediction holds 

significant practical significance. It can address the aforementioned issues, making climate insurance 

more feasible, creating new markets and opportunities, and playing a crucial role in helping developing 

country governments resist natural disasters and improve climate adaptability. 

2.  Research Methods 

Given the ongoing intensification of global warming and its severe impact on precipitation patterns in 

the atmosphere, resulting in frequent extreme weather events and significant economic losses in China, 

it is of critical practical significance to scientifically and accurately forecast precipitation, especially 

during the summer flood season [6]. Currently, most annual precipitation forecasting methods are 

primarily meteorological, but the independent variables in these methods are difficult to precisely 

determine, and the models have enormous computational demands. The ARIMA method for time series 

analysis is widely used in precipitation research due to its advantages of low computational demand and 

strong resistance to interference [7,8]. However, the ARIMA method performs inadequately when 

dealing with nonlinear sequences, and annual precipitation sequences are predominantly nonlinear [9]. 

To address these issues, researchers have proposed the EEMD-based ARIMA time series model [10]. 

The EEMD-ARIMA model, known for its excellent adaptability, can effectively handle complex 

nonlinear and non-stationary time series, providing more accurate short-term runoff forecasts than 

traditional ARIMA models [11]. 

2.1.  EEMD 

The EMD method effectively converts complex nonlinear and non-stationary sequences into a series of 

single-frequency waves [12]. Compared to wavelet and Fourier transform decomposition, EMD offers 

better time-frequency resolution and adaptability and effectively resolves the issue of modal aliasing, 

resulting in more precise analysis and better future trend predictions. EEMD is an improvement upon 

EMD, capable of effectively handling original signals by incorporating noise into Intrinsic Mode 

Functions (IMFs) and trend items and calculating their averages to determine IMF components and 

residual terms, thereby better predicting signal characteristics. Additionally, EEMD provides higher 

accuracy and greater flexibility than EMD and can be used to analyze raw data. The specific steps to 

decompose the original signal using EEMD are as follows: 

1) Determine the number of times to add white noise (i.e., total number of trials) en   and the 

amplitude coefficient  . 

2) Add white noise to the original signal )(tx , where )(w t  is the white noise sequence added for the 

i  th time, yielding the signal )(tX  : 

)(*)()( twtxtX +=  (1) 

3) Identify all local maxima and minima of the time series )(tX    to be decomposed and fit all 

maxima and minima using the cubic spline function, forming the upper and lower envelopes )(tX  . 

4) Let )(1 tb  be the average of the upper and lower envelopes. Subtract )(tX   from )(1 tb to obtain a 

new sequence: 
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)()()( 11 tbtXtX +=  (2) 

5) Determine whether )(1 tX    satisfies the IMF conditions. If it does, )(1 tX    is the first IMF 

component, IMF1; if not, )(1 tX   becomes the new original sequence and returns to steps 3 and 4 for 

further screening until the IMF conditions are met. 

6) Subtract IMF1 from )(tX   to obtain the residual 1x , as shown in formula (3). Repeat steps 3 to 6 

n   times until 1x  or IMFn is less than a given value or nx   is a monotonic function, ending the 

decomposition process. 

11 )( IMFtXx −=  (3) 

7) Use the standard deviation (SD) to determine whether to terminate the screening. When SD is less 

than the threshold  , the screening ends. The general range of α is 0.2~0.3. )(tX   After processing 

through steps 3 to 7, different scales of IMFs and residuals are obtained. 
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8) Use the mean of the white noise spectrum, which is zero, to average the IMFs obtained from en  

decompositions, resulting in the final IMF components )(tcn   and trend items )(tr   after EEMD 

decomposition: 
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9) The final decomposition result of )(tx  is: 
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2.2.  ARIMA 

ARIMA ),,( qdp  is the most commonly used time series model [13]. AR represents the autoregressive 

process, with parameter p  denoting the number of autoregressive terms; MA represents the moving 

average process, with parameter q  denoting the number of moving average terms; d  is the differencing 

order to achieve stationarity in the time series. The ARIMA ),,( qdp  model structure is: 
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Where 
q

q

dd BBBB  −−−=−= ...1)(;)1( 1   is the autoregressive polynomial coefficient of 

the stationary invertible ARMA ),( qp   model; 
q

qBBB  −−−= ...1)( 1   is the moving average 

polynomial coefficient of the stationary invertible ARMA ),( qp   model, and  t   is a white noise 

sequence with zero mean. The ARMA ),( qp  model is denoted as tt
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2.3.  EEMD-ARIMA Model 

Precipitation variation is a complex phenomenon. Therefore, a stable method must be employed for 

better prediction. This study establishes an EEMD-ARIMA prediction model based on EEMD 

decomposition. The modeling method is shown in Figure 1. 

 

Figure 1. Flow chart of EEMD-ARIMA prediction model 

The implementation of the EEMD-ARIMA prediction model involves two steps: 

1. First, convert the original signal into several independent IMFs and residuals using EEMD, and 

analyze each IMF and residual to obtain their forecast values. 

2. Then, use the ARIMA method to reconstruct these forecast values, achieving more accurate 

predictions. 

3. Finally, calculate the forecast values of each component to derive the most accurate precipitation 

forecast. 

3.  Model Results and Analysis 

This section uses the EEMD-ARIMA model to model and analyze China’s annual precipitation data. To 

ensure the model’s stability and reliability, given that time series prediction accuracy decreases over 

time, annual precipitation data from 1953 to 2007 were used as the training sample, while data from 

2008 to 2012 were used as the test set. 

3.1.  EEMD Decomposition 

Following the EEMD algorithm process, which involves adding noise, EMD decomposition, and 

calculating the ensemble, the 55-year annual precipitation series was decomposed into four IMF 

component series (IMF1-IMF4) and one residual component IMF5, as shown in Figure 2. The horizontal 

axis represents time, and the vertical axis represents precipitation. 
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Figure 2. EEMD Decomposition of Annual Precipitation Series 

It can be observed that IMF1 has the highest frequency, followed by IMF2, IMF3, and IMF4, while 

IMF5 is a residual component and a monotonically decreasing function. Among these variables, IMF1, 

representing short-term random variations, usually serves noise processing. However, directly removing 

noise may reduce fitting and prediction accuracy, so random fluctuations fitting is also used to reduce 

model errors. 

To quantitatively evaluate the denoising results of EMD and EEMD, the Root Mean Square Error 

(RMSE) metric is used to better reflect the distribution characteristics of the predicted values. RMSE 

measures the degree of difference between the estimated values and the actual values, providing an 

overall reflection of the prediction value dispersion. Hence, the smaller the RMSE, the higher the 

reliability of the estimator and the better the denoising effect. The formula is as follows: 


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−=
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t

txtx
n
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 (9) 

Where )(tx is the original time series, and )(tx  is the denoised time series. 

The RMSE results are shown in Table 1. The RMSE of EEMD is smaller, indicating its superior 

denoising effect compared to EMD. 

Table 1. RMSE calculation value 

Method RMSE 

EMD 308.11 

EEMD 294.90 

3.2.  Model Fitting 

In annual precipitation forecasting, most researchers choose a single ARIMA time series model. With 

technological advancements, the ARIMA model alone no longer meets the current needs for annual 

precipitation forecasting. Therefore, this study uses the EEMD method to decompose complex series 

into multiple simple series and a residual series to suppress noise and multiple frequency characteristics. 

To avoid the modal aliasing problem brought by EMD decomposition, the improved EEMD algorithm 

is used to determine the non-stationary sequences IMF1, IMF2, IMF3, IMF4, and IMF5, and then fit 

them using the ARIMA model. 
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To enhance fitting, ARMA (2,0), ARMA (4,2), ARMA (2,4), ARIMA (5,0,1), and ARIMA (1,1,1) 

models were chosen for IMF1, IMF2, IMF3, IMF4, and IMF5, respectively. The fitting results are shown 

in Figure 3. 

 

Figure 3. Component Fitting Results 

According to the ARMA prediction results, the fitting ability of IMF1 still needs improvement. 

However, compared to discarding high-frequency signals, the fitting ability of IMF2, IMF3, IMF4, and 

IMF5 is more outstanding, significantly reducing the bias in fitting results. EEMD provides complete 

information, so the original signal can be reconstructed by summing its parts. This reconstruction results 

in a new sequence very close to the original sequence, with errors approaching zero. From the model 

training results, it is found that the fitting effect of low-frequency elements is better than that of high-

frequency elements. 

3.3.  Model Results 

Finally, after parameter tuning, the ARIMA (1,0,1) model was set, and the EMD-ARIMA, EEMD-

ARIMA, and ARIMA models were used to model the annual precipitation series. The prediction results 

are shown in Figure 4, which indicates that the EEMD-ARIMA model’s prediction is closest to the 

original values and has the highest fitting degree. 

 

Figure 4. Comparison of Model Results 
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The prediction effects of the three models were evaluated using the Mean Relative Error (MRE). 

MRE reflects the model’s error magnitude and prediction accuracy. The smaller the MRE, the smaller 

the deviation between the predicted and original values, and the higher the prediction model’s accuracy. 

The formula is as follows: 


=

−
=

n

t tx

txtx

n
MRE

1 )(

)()(1
 (10) 

Where )(tx  is the original value, and )(tx  is the predicted value. 

The MRE calculation results for the three models are shown in Table 2. The EEMD-ARIMA 

prediction model has the smallest MRE, followed by the EMD-ARIMA model, and the ARIMA 

prediction model has the largest MRE, indicating that the EEMD-ARIMA prediction model has the best 

prediction effect. 

Table 2. Calculated value of mean relative error(MRE) 

Method MRE 

ARIMA 0.157 

EMD-ARIMA 0.138 

EEMD-ARIMA 0.105 

4.  Conclusion 

This paper aims to explore an efficient precipitation forecasting method to aid climate insurance 

decision-making. Given the importance of climate change factors to the insurance industry, the proposed 

model holds significant relevance for climate insurance decision-making. By utilizing the EEMD 

decomposition algorithm and ARIMA time series analysis model, this study models annual precipitation 

time series, allowing for accurate predictions of annual precipitation trends. This provides a scientific 

basis for insurance companies to assess risks, set insurance rates, and optimize product designs. 

Moreover, the model assists governments and regulatory agencies in formulating more effective climate 

risk management policies, thereby enhancing overall societal climate resilience. 

The selection of simple models for the high-frequency components after EEMD decomposition in 

this study could be improved in the future by using neural network models, which may provide better 

fitting for high-frequency components. Although the EEMD algorithm used in this paper addresses the 

modal aliasing problem, it still faces the issue of endpoint effects during decomposition. Future research 

could explore more effective decomposition algorithms to improve accuracy. Additionally, given the 

high complexity of the climate system, any predictive model will have certain limitations and 

uncertainties. This study only selected the more prominent annual precipitation series as the model 

fitting object in climate change. Therefore, when applying this model to climate insurance decision-

making, it is necessary to fully consider various influencing factors and integrate other climate 

information and professional knowledge for comprehensive judgment. 

It is important to note that while climate insurance has the advantages of prevention, dispersion, and 

market-based fundraising, it also faces challenges, such as the inability to fully adhere to the law of large 

numbers and moral hazards, which may lead investors to make incorrect decisions, thus reducing their 

long-term investment returns. To promote the development of climate insurance in China, this paper 

proposes the following measures: 1. Strengthen the construction of meteorological infrastructure and 

data, develop natural disaster risk maps for different regions, encourage insurance companies to offer 

diverse and multi-level climate insurance products, and increase public willingness to purchase 

insurance to avoid adverse selection. 2. Enhance moral hazard warnings to prevent negative impacts and 

take effective measures to improve the social environment, thereby promoting the sustainable 

development of climate insurance in China. 
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